
Arkage Parser Convention EN 1

Arkage Parser Convention (EN)
Parsing and interpreting command lines: standards
and guidelines.
Version 1.0, August 19, 2024 By Téo Conan

From https://devolution.studio/blog/en/arkage-parser-convention/#

Edit me on GitHub : https://github.com/Devolution-
Studio/devolution.studio/tree/master/public/articles

Introduction
This document aims to establish a rigorous framework for the design and
interpretation of command-line interfaces CLIs). By defining a strict set of
rules regarding syntax, data types, and command structures, this convention
seeks to:

Improve the readability and consistency of CLI interfaces, thereby
facilitating their use by end-users.

Reduce interpretation errors and ambiguities, ensuring reliable command
processing.

Promote interoperability between different CLI tools by adopting common
conventions.

Serve as a reference for developers looking to create new CLI tools.

This convention will delve into the constituent elements of a command line and
how to perform proper syntactic analysis. It will also define supported data
types and interpretation mechanisms. Practical examples and diagrams will
illustrate the application of these rules in real-world scenarios.

This convention can be particularly useful for developers who wish to create
their own CLI tools.

Foundations of Interpretation

https://devolution.studio/blog/en/arkage-parser-convention/#
https://github.com/Devolution-Studio/devolution.studio/tree/master/public/articles
https://github.com/Devolution-Studio/devolution.studio/tree/master/public/articles

Arkage Parser Convention EN 2

Process a string of characters into a specific action is the challenge of
command-line interpretation. Behind the apparent simplicity of a command lie
complex mechanisms of syntactic analysis, raising numerous questions:

How do you associate the correct arguments with options/commands?

How do you verify the validity of the data provided by the user?

How do you handle errors?

This chapter explores the various interpretation techniques, pitfalls to avoid,
and best practices to adopt for creating reliable and robust CLI tools.

Naming convention
Within this technical convention, we will adopt the kebab-case naming
convention for options, commands, and subcommands. This choice ensures
maximum consistency and readability in defining our commands and options.

Kebab-case consists of writing words in lowercase, separated by hyphens (-).
For example: create-user , list-files , set-config .

This choice is motivated by its improved readability due to the clear separation
of words and its compatibility with the syntax of long options on the command
line (e.g., --create-user). This convention is also widely adopted in many areas
of web development, making it familiar to most developers.

Types

Arkage Parser Convention EN 3

Many CLI tools use auto-completion to suggest possible options and values.
Argument typing is crucial to provide relevant suggestions and reduce input
errors.

While basic types like strings , numbers , and booleans are well-known, it can be
beneficial to delve deeper into expected types to offer a better user
experience. Here is a non-exhaustive list of interesting types to consider:

Nom type Description

String string
Careful, char " is reserved to wrap the string ,
but you can escape it with "\""

Char char
Any single char, char ' is reserved to wrap the
string , but you can escape it with '\''

Boolean bool Able to parse a TrUe as true for example

File file

Can check the existence of the file and its
extension when the command is launched
(optional)

Folder folder Can check the existence of the directory when
the command is launched (optional)

Number number double type, can be signed

Url url Able to recognize the format of a URL

Enumeration enum A precise list of possible values

Array Array<T> Special case, can only be used for command
arguments as the last argument

Command
The first word of a command specifies the program to be executed. This
program, often referred to as an executable or binary, is a file containing the
instructions to be carried out. The operating system searches for executables
in specific directories, defined in your configuration (e.g., in the .bashrc file).
The command is the entry point of your program.

~ which git

/usr/bin/git

Sub-command

Arkage Parser Convention EN 4

Subcommands are specific commands associated with a main program. They
allow for organizing a program's functionalities into finer modules.

For example, git uses subcommands to perform operations such as checkout ,
merge , or commit . These subcommands are actually full-fledged commands that
are executed within the context of the command.

Note Not all programs use subcommands. Some programs perform a single
task and take their arguments directly.

For example, git has sub-commands :

git checkout

git merge

git commit

But ping command don't have any, it directly takes an argume

ping www.google.com

Argument overloading
Subcommands, much like in Java, can offer multiple possibilities and
combinations of arguments for a single subcommand. This is referred to as
having multiple signatures for a subcommand.The rules are similar to those in
Java: signatures are declared for a single subcommand, and signatures must
have a different number of arguments or different types. We will explore a
practical example later in this document.

Options

What is an option ?
An option is a special argument that modifies a command's behavior. It is
preceded by two hyphens (--) to distinguish it from other arguments. Its
purpose is to provide additional information to the command so that it executes
in a specific way.

An option always requires a typed value to function. For example:

--output ./my_file.txt

Here, --output is the option and ./my_file.txt is

the value indicating where to save the output

Arkage Parser Convention EN 5

--output 4

The option expected a file path, a number doesn't make sense

Global options
Some options are defined at the main program level and are therefore available
for all subcommands. These are called global options. Other options are
specific to a particular subcommand and are therefore called local options.

For example, the --verbose option could be global and available throughout the
program, while the --output option would be specific to the subcommand being
executed.

Boolean Options: A Special Case
Although an option generally requires a value to function, there's a scenario
where specifying a value isn't necessary. This scenario arises when an option
expects a Boolean value:

Default Value By default, a Boolean option is considered false . If you don't
specify it, the default value will be assumed.

Activation To activate a Boolean option, simply include it in the command,
and its value will be set to true .

Explicitly Disabling a Boolean Option
In certain cases, you might want to explicitly indicate that you wish to disable a
Boolean option, for better user understanding. To achieve this, many
commands offer a specific syntax, often by adding the prefix no- before the
option name:

--verbose # Option "verbose" will be equals to true

--no-logs # Option "no-logs" will be equals to true

--logs false # Unable to set an arguments to an boolean optio

Naming convention reminder
As explained at the beginning of this document, to improve the clarity and
maintainability of scripts, it is recommended to use kebab-case notation for

Arkage Parser Convention EN 6

naming options. This convention consists of separating words with hyphens,
using only lowercase letters.

Example:

--output-file --set-credentials --no-logs

--outputFile # Bad format

Rules to remember :

Uniqueness: Each option must have a unique name within a command.

Data type: Options can have different data types (string, number, boolean,
...).

Default value: Boolean options have a default value (false).

Kebab-case: Options must use the kebab-case convention.

Flags
To simplify command input, many commands offer short options, often called
flags. A flag is represented by a single character preceded by a single hyphen
(-).

Flags have the particularity of being able o accumulate. It is common to be able
to combine multiple flags into a single argument. For example, ls -al is
equivalent to ls -a -l .

Flags are often shortcuts for long options, which are generally more explicit.

Rules to remember:

Uniqueness: Each flag must be unique within a command.

Optionality: Each option does not necessarily require a flag; it is simply a
"shortcut".

Explicitness: A flag should have a letter that is explicit about the option to
which it is attached, for example, -o for --output .

Arguments

Arkage Parser Convention EN 7

Arguments are data provided to a command or subcommand to specify the
elements on which it should operate. They are closely related to options and
flags but are distinguished by their type and their position in the command
line.

To ensure the consistency and robustness of a command, each argument must
correspond to a referenced data type. This typing allows for the validation of
user inputs and prevents runtime errors. If necessary, it will allow for the return
of detailed errors.

Arguments array
Some commands may accept a variable number of arguments. To represent
this concept, the Array<T> type must be used. An argument of array type can
contain zero, one or more elements of type T .

Because of their variable nature, array type arguments must be placed in the
last position in the list of arguments of a command. This convention allows for
command line parsing and enables the correct interpretation of values provided
by the user.

Here is an example:

Acceptable arguments are : number, Array<string>

arkage ping 4 us uk eu-west eu-est

Arkage Parser Convention EN 8

Ce processus est très proche des variadic en PHP, cependant il nʼest possible
dʼavoir un type Array<T> uniquement pour les arguments de commandes /
sous-commande. Ce type nʼest pas utilisable pour une option pour des raisons
de lisibilité.

Examples and Practical Cases
Complete Command Declaration

Global Options
For our practical case, let's consider a fictitious command that we will name
arkage . As a first step, we can declare our command's global options:

Option Flag Type Default Description

--verbose -v Boolean true
Enable verbose
mode

--lang -l string en
Change
language

--en Boolean true
Change
language for
en

--fr Boolean true
Change
language for
fr

By deduction, we understand that it would be redundant to put both the --en
and --fr options on the same command line. However, from a syntactic point
of view, nothing prevents us from doing so. It will be up to the program to
decide which language to choose or if it wants to raise an error.

arkage help --fr --en # Valid syntax

Sub-commands
Once the global options have been declared, we need subcommands to have
something to execute. To declare a subcommand, it is important to declare its
name (always in kebab-case), its options, and its possible arguments.

Arkage Parser Convention EN 9

Sub-
commands

Options Flag Type Sub-command
arguments

help No arguments

ping
int ,
Array<string>

register --credentials -c Boolean
string ,
string or
filepath

--key -k Boolea

--server -s string

Available sub-commands are :

help

ping

register

start

exit

help command donʼt takes any arguments but can takes these options :

--lang or -l with a string arguments behind

--fr is a boolean

--en is a boolean

For the sub-command ping , this one donʼt takes any option but can take an
infinity of string arguments

arkage ping 4 us uk eu-west eu-est

The first argument specifies the number of attempts, and the rest specify the
servers to reach. The arguments are converted back into an array for
processing. Here is the declaration of the arguments for this subcommand:

Attempts : int

Servers : Array<string>

An Array must always be the last argument because it can contain an infinite
number of values.

Arkage Parser Convention EN 10

Global options

arkage register -c teo@arkage.com 1234aze*

arkage register -k ./id_rsa

arkage register -s eu-west -k ./id_rsa -v --lang en

Error, but on the command processing side because -c and -k

